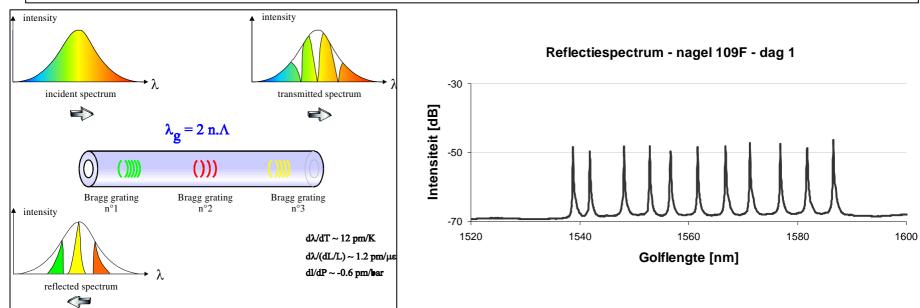

New developments and experiences with instrumentation techniques for pile testing

Optical fibre technology (FBG-DTG)

Principles FBG (DTG) optical fibre technology (1/2)

- An optical fibre with \varnothing -195 μm optical fibre is locally treated (Bragg grating)
- At the local FBG zone incident light wave (1520-1600 nm) is reflected at a specific wave length
- The reflected wave length depends on temp. and strain of the FBG-zone (linear)
- The wave length which is reflected at the FBG can be determined up on fabrication
- Typical accuracies with FBG technology : <5 $\mu strain$ en <0.5 $^\circ C$
- Specific Draw Tower Grating Technology of FOS&S (Geel) : tensile strength of the fibre up to 6 % (60 000 µstrain) - long term service : 1 to 2 %



Principles FBG (DTG) optical fibre technology (2/2)

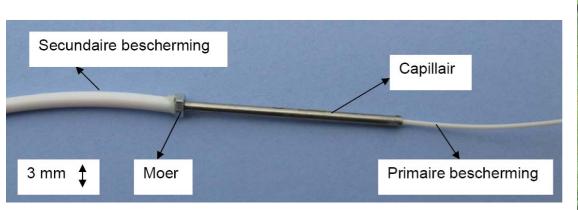
Advantages of the FBG/DTG principle:

- → high precision/accuracy
- → Read out equipment : low cost
- \rightarrow Multiplexing (up to 20 or more FBG sensors on one \varnothing -195 µm fibre
- \rightarrow ^(*)long term stability
- \rightarrow (*)no influence by elektromagnetic radiation, stray currents, etc.
- \rightarrow (*)not sensible for corrosion, short circuits (H20), ...
- → very small dimensions: advantage for several (geotechnical) elements that need to be monitored ↔ Fragility

(*) Also for other fibre optic technologies as Brillouin scattering, ...

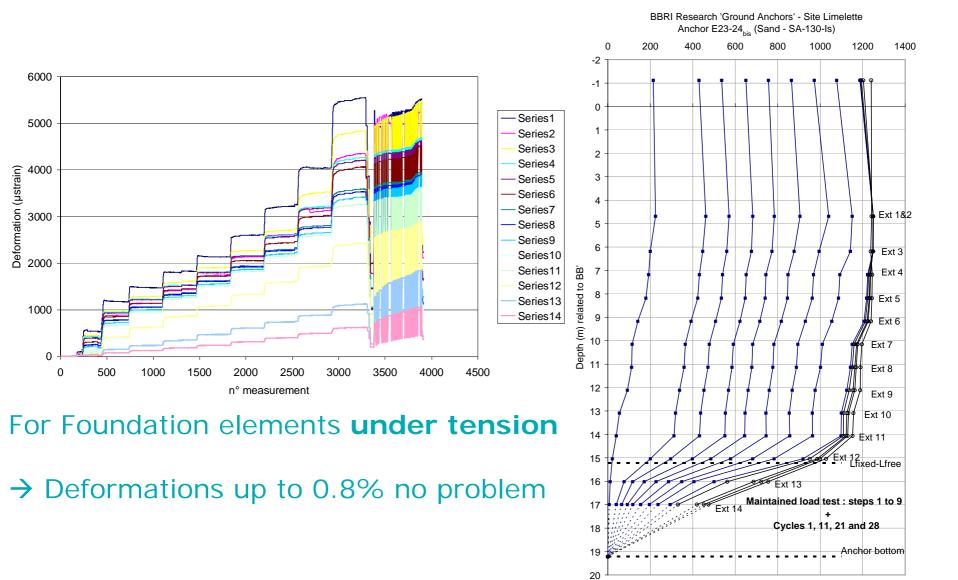
Development of O.F.- system for installation in jet grout nails (hollow bars)

- → On demand of TUC Rail for long term monitoring purpose at RER site in Ottignies
- → Development of BBRI in collaboration with TUC RAIL, FOS&S and J. Maertens (KULeuven) to develop solution based on optical fibre technology in the framework of the TIS-SFT project


Phase 6 et suivantes

Concept & Installation characteristics

- → FBG chain provided with \emptyset 6 mm anchors
- → between 2 anchors : 1 FBG sensor moving free from environment with double protection → extensometer principle
- → up to 20 FBG sensors (extensometers) on one fibre
- → Installation of sensors after installation of the nail (in the hollow section) fixed to bar via injection of a special cement grout
- → Fibre-optic system + injection system = \emptyset 15 mm

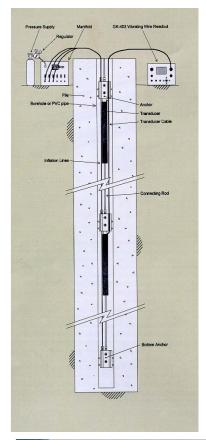

The same system can be applied in :

hollow bar anchors, micropiles and piles (reservation tube fixed to reinforcement cage) for load distribution measurements during load tests

Example of Ia (Re)load test on hollow bar anchor in framework of BBRI Ground anchor research in Limelette

For (foundation) elements **under compression** the O.F. system has been adapted

- → Laboratory tests to find a suitable (stiff and deformable) grout mix (cementbentonite,epoxy, ...)
- → System tests in compressive pile load tests & comparison with classical extensometers have been performed
- → Positive results up to deformations of ±1800 to 2000 µstrain (0.2%)


In development ;

integration of optical fibre in **retrievable extensometer system for pile load tests** (tension/compression)

Advantage:

-number of extensometer modules quasi unlimited -allows a smaller diameter of the reservation tubes

- → Laboratory tests are positive
- → a 20-m system with 18 extensometer modules is being assembled for the moment en will soon be tested in situ.

